Phytomass patterns across a temperature gradient of the North American arctic tundra

نویسندگان

  • Howard E. Epstein
  • Donald A. Walker
  • Martha K. Raynolds
  • Gensuo J. Jia
  • Alexia M. Kelley
چکیده

[1] Only a few studies to date have collectively examined the vegetation biomass and production of arctic tundra ecosystems and their relationships to broadly ranging climate variables. An additional complicating factor for studying vegetation of arctic tundra is the high spatial variability associated with small patterned-ground features, resulting from intense freeze-thaw processes. In this study, we sampled and analyzed the aboveground plant biomass components of patterned-ground ecosystems in the Arctic of northern Alaska and Canada along an 1800-km north-south gradient that spans approximately 11!C of mean July temperatures. Vegetation biomass was analyzed as functions of the summer warmth index (SWI–sum of mean monthly temperatures > 0!C). The total absolute biomass (g m!2) and biomass of shrubs increased monotonically with SWI, however, biomass of nonvascular species (mosses and lichens), were a parabolic function of SWI, with greatest values at the ends of the gradient. The components of plant biomass on patterned-ground features (i.e., on nonsorted circles or within small polygons) were constrained to a greater degree with colder climate than undisturbed tundra, likely due to the effect of frost heave disturbances on the vegetation. There were also clear differences in the relative abundances of vascular versus nonvascular plants on and off patterned-ground features along the SWI gradient. The spatial patterns of biomass differ among plant functional groups and suggest that plant community responses to temperature, and land-surface processes that produce patterned-ground features, are quite complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NDVI patterns and phytomass distribution in the circumpolar Arctic

The Circumpolar Arctic Vegetation Map (CAVM) was used to analyze the distribution of NDVI and phytomass in the Arctic, providing data for understanding arctic vegetation patterns, assessing change, and calibrating models. The dominant trend in the analysis of Normalized Difference Vegetation Index (NDVI) was a decrease from south to north, correlating with bioclimate subzones and vegetation uni...

متن کامل

Biotic controls over spectral reflectance of arctic tundra vegetation

In this study, seasonal field measurements of the normalized difference vegetation index (NDVI), using a field spectroradiometer, and leaf area index (LAI), using a LI-COR LAI-2000 Plant Canopy Analyzer, were compared with above-ground phytomass data to investigate relationships between vegetation properties and spectral indices for four distinct tundra vegetation types at Ivotuk, Alaska (68.49...

متن کامل

15 22 Payette

The tundra-taiga interface, or forest-tundra (lesotundra in Russian, and toundra forestière in French), corresponds to the subarctic zone where the closed boreal forest gradually becomes less dense and progressively breaks down into tree islands towards the treeless, Arctic tundra (1). The interface does not form a sharp limit of tree growth in the landscape but is instead a north-south transit...

متن کامل

Soil climate and frost heave along the Permafrost/Ecological North American Arctic Transect

The soil climate data has been collected during a recent biocomplexity study along a bioclimatic gradient in the North American Arctic Tundra. The measurements were made from South to North at: Happy Valley, Sagwon Hills, Franklin Bluffs, Deadhorse, West Dock, Howe Island, Green Cabin, Mould Bay and Isachsen research sites. Mean annual air temperature changes from around –10°C at the Happy Vall...

متن کامل

A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI

A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI Martha K. Raynolds a , Donald A. Walker a , Howard E. Epstein b , Jorge E. Pinzon c & Compton J. Tucker c a Institute of Arctic Biology, University of Alaska, Fairbanks, AK, 99775, USA b Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA c Biospheric Science Branch, NA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008